
Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations:
Two-dimensional case

Jiwei Zhang,1,* Zhenli Xu,2,† and Xiaonan Wu1,‡

1Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong, People’s Republic of China
2Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

�Received 7 January 2009; published 21 April 2009�

This paper aims to design local absorbing boundary conditions �LABCs� for the two-dimensional nonlinear
Schrödinger equations on a rectangle by extending the unified approach. Based on the time-splitting idea, the
main process of the unified approach is to approximate the kinetic energy part by a one-way equation, unite it
with the potential energy equation, and then obtain the well-posed and accurate LABCs on the artificial
boundaries. In the corners, we use the �1,1�-Padé approximation to the kinetic term and also unite it with the
nonlinear term to give some local corner boundary conditions. Numerical tests are given to verify the stable
and tractable advantages of the method.
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I. INTRODUCTION

Many physical phenomena are modeled by Schrödinger-
type equations on an unbounded domain such as gravity
waves on deep water in fluid dynamics, pulse propagations
in optics fibers, and Bose-Einstein condensation. How to nu-
merically and efficiently solve these problems remains a
challenge due to the principle difficulties of not only the
unboundedness but also nonlinearities and high spatial di-
mensions. The common practice to overcome the unbound-
edness is to limit the domain of interest by an artificial
boundary �, impose well-posed and accurate absorbing
boundary conditions �ABCs�, then solve the reduced ap-
proximate problems defined on the bounded domain. The
procedure is usually called artificial boundary method, in
which the design of suitable ABCs plays a core role. In the
last decades, mathematicians, engineers, and physicists have
been attracted and devoted to the study of this field, such as
�1–5� and reviews �6–9�. In general, the artificial boundary
conditions can be grouped into two categories, nonlocal and
local ABCs. Global ABCs usually lead to the well-
approximated and well-posed truncated problems; however,
they are usually expensive for practical simulations. While
local ABCs are computationally efficient and tractable, the
accuracy and stability are the main concerns. Hence, an ap-
propriate boundary condition implies two essential require-
ments:

�1� They are “easy” to discretize and “cheap” to compute
in terms of the computational time;

�2� They combined with the governing equation on the
computational domain result in well-posed problems.

Another approach worth to mention is the perfectly
matched layer method �10�, which has been applied to many
complicated wave propagation problems.

In this paper, we consider the construction of high-
accurate local absorbing boundary conditions �LABCs� for
the nonlinear Schrödinger �NLS� equations

i�t� = − �� + V�x�� + f����2��, x � Rd, t � 0, �1�

��x,0� = �0�x�, x � Rd, �2�

where d=1 or 2, V�x� is the potential function, and �0�x� is
the initial data with a compact support in a finite domain
�i�Rd. The nonlinear term f����2� can be endowed with
different forms to stand for different applications �11–13�.
For example, f����2�=g���2 corresponds to a defocusing �g
�0� or a focusing �g�0� effect of the cubic nonlinearity,
which appears in the nonlinear optic for laser beam propaga-
tion �14–16�. Other nonlinearities such as the quintic nonlin-
earity �17� are also widely considered. For the linear
Schrödinger equation, ABCs or the so-called transparent
boundary conditions have been widely discussed in the early
literatures �18–23� and references therein.

The second essential difficulty of the numerical solution
for problem �1� is the nonlinearity. Generally, it is difficult
for nonlinear problems to design some efficient ABCs. Sev-
eral strategies have been developed such as the linearized or
reduced method �24–27�, operator splitting method �28–31�,
and references therein. For the nonlinear Schrödinger equa-
tion, although the things turn to be much more complicated,
there has been still some new progress �32–40� recently,
mostly focusing on the cubic nonlinearity. This paper ex-
tends the unified approach �41� to obtain efficient LABCs for
the NLS equations on a rectangle boundary. For the multidi-
mensional case, the corners always bring us in lots of
trouble. By performing the �1,1�-Padé expansion to the en-
ergy operator and uniting it with the nonlinear term, we
achieve the corresponding absorbing boundary conditions at
corners. The obtained nonlinear LABCs are “easy” to dis-
cretize and can efficiently absorb the “fast” or “low” waves
by adjusting the wave-number parameter involved in the LA-
BCs. Furthermore, we investigate the well-posedness of the
reduced problems defined on the computational domain with
the obtained LABCs by a normal mode analysis. Some nu-
merical examples are given to verify the attractive advan-
tages of the method.

The organization of this paper is as follows. In Secs. II
and III, we give a detailed description of our unified ap-
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proach for designing the local absorbing boundary condi-
tions. Section IV considers the stability of the reduced initial
boundary problem on the truncated domain and the adaptive
selection of the parameter wave number. We end the paper
by giving some numerical examples to prove the effective
and tractable advantages of our obtained LABCs.

II. UNIFIED APPROACH FOR ONE-DIMENSIONAL
MODEL

To understand the spirit of the unified approach to local
absorbing boundary conditions, let us briefly give an over-
view of its basic idea from the one-dimensional case �41�.
Rewrite Eq. �1� in operator form on the artificial boundaries
� as follows:

i�t��x,t� = �T̂ + V̂���x,t� , �3�

where operators T̂ and V̂ read

T̂ = − �x
2 and V̂ = V�x� + f����2� . �4�

The well-known time-splitting method �or the split-step
method� implies that the wave propagation carries out the
action of a kinetic energy step and a potential energy step
separately for small time size �. By Baker-Campbell-
Hausdorff theorem, in a time interval from t to t+� for �
small enough, the exact solution of Eq. �3� can be approxi-
mated by

��x,t + �� � e−iT̂�e−iV̂���x,t� . �5�

which has the first order error O��� arising from the noncom-

mutativity of the operators T̂ and V̂ �42�. For the second-
order error O��2�, the Strang splitting �28� is widely used by

��x,t + �� � e−iT̂�/2e−iV̂�e−iT̂�/2��x,t� . �6�

The approximations in Eqs. �5� and �6� correspond to two
subproblems: the linear subproblem and nonlinear subprob-
lem. By adding some LABCs for linear subproblem, and
solving the nonlinear subproblem �ODE� directly at the same
time step, Refs. �33,43� show that this method is effective to
numerically solve nonlinear Schrödinger-type equations.
This approach is basically a two-step method. The difficulty
is due to the nonlinearity of the problem, they only obtained
the LABCs for linear subproblem. Can we obtain a LABC
which can be applied to the nonlinear problems directly?
Toward this goal, we use the operator form

��x,t + �� = e−i�T̂+V̂����x,t� , �7�

which captures the information of the kinetic and nonlinear
energy together. A clear advantage of the direct method is
that the method is tractable. Another advantage of the direct
method is that the method is showed stable, while the stabil-
ity of the two step method is unknown. By differing from the
left-going waves and right-going waves, from paper �41� the

kinetic operator T̂ can be approximated by

T̂ � T̂�2� = − ��i2k0
�

�x
+ k0

2� , �8�

T̂ � T̂�3� = − �i�x � 3k0�−1�3ik0
2�x � k0

3� , �9�

which correspond to the second- and third-order local bound-
ary conditions, respectively. The wave-number parameter
k0=		0 is used to adjust the efficiency of the boundary con-
ditions and the frequency 	0 is a positive constant. Substi-

tuting T̂�n� for T̂ in the first approximation in Eq. �7� yields
the one-way approximate equations

i�t��x,t� = �T̂�n� + V̂���x,t� . �10�

By a simple calculation, the nonlinear absorbing boundary
conditions of order 2 and 3 are given by

n = 2: i�t� � i2k0�x� = �− k0
2 + V�x� + f����2��� , �11�

n = 3: i�i�x � 3k0��t� = �− �3ik0
2�x � k0

3� + 
V�x� + f����2��


�i�x � 3k0��� . �12�

Thus we obtain the local absorbing boundary conditions for
nonlinear Schrödinger-type equations on the artificial bound-
aries.

III. UNIFIED APPROACH FOR MULTIDIMENSIONAL
MODEL

A. Multidimensional linear equations

The above adopted strategy for constructing the nonlinear
LABCs issued from the linear model, i.e., was to obtain the
approximation of the kinetic term. Now we recall the linear
equation in two dimensions

i�t� = − ��x
2 + �y

2��, �x,y� � R2. �13�

In frequency domain, Eq. �13� implies the dispersion relation

�2 + �2 = 	 , �14�

where � is the wave number in the x direction and � is the
wave number in the y direction. Let the computational do-
main �i= �0,L�2. The following plus sign in “�” corre-
sponds to the positive direction, the minus sign to the nega-
tive direction, respectively. On the east and west artificial
boundaries �e= 
�x ,y� �x=L ,0�y�L�, �w= 
�x ,y� �x=0,0
�y�L�, we have the corresponding dispersion relation of
Eq. �14�,

� = � 		 − �2. �15�

By using the �1,1�-Padé approximation �21� for the square
root in the dispersion relation �15�, we obtain

� = � 		 − �2 � � �0
1 + 3z

3 + z
, �16�

where z= 	−�2

�0
2 and �0 is a wave-number parameter to adjust

the efficiency of the approximation in the x direction. Sim-
plifying Eq. �16� and solving the result, we have

	 =
��0

3 − 3�0
2� − ��3�0�2� + ��2

� � 3�0
. �17�
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By the same argument as Eq. �16�, we can obtain the ap-
proximate dispersive equation for frequency vector �� ,�� on
the northern and southern boundaries �n= 
�x ,y� �y=L ,0�x
�L�, �s= 
�x ,y� �y=0,0�x�L�,

	 =
��0

3 − 3�0
2� − ��3�0�2� + ��2

� � 3�0
. �18�

In fact, identity �18� follows directly Eq. �17� by exchanging
� with �, and �0 is the expand point in the y direction. Now
we focus on the algebraic relations on four corners. By uti-

lizing formula �9�, one can see that the kinetic operator T̂ can
be approximated by using the �1,1�-Padé expansion. Apply-
ing the expansion to both �2 and �2 with the corresponding
expansion point ��0 ,�0�, we have

	 = − �0
2− 3� � �0

− � � 3�0
− �0

2− 3� � �0

− � � 3�0
. �19�

In identity �19�, the plus sign in “�” is used at the northeast
corner �L ,L�, the minus at the southwest corner �0,0�. The
approximations at the northwest corner �0,L� and the south-
east corner �L ,0� read, respectively,

	 = − �0
23� + �0

� + 3�0
− �0

2− 3� + �0

− � + 3�0
, �20�

	 = − �0
2− 3� + �0

− � + 3�0
− �0

23� + �0

� + 3�0
. �21�

By performing the inverse transformation into the physical
space, one can obtain the local absorbing boundary condi-
tions for linear equation �21,43�. Section III B will discuss
how to obtain some efficient ABCs for the nonlinear equa-
tions.

B. Unified approach for multidimensional NLS equations

We have obtained the approximate dispersion relation for
the linear equation in two dimensions, which can yield its
LABCs after applying the dual correspondences �↔−i�x,
�↔−i�y, and 	↔ i�t between frequency and physical do-
mains. By straightforwardly extending the technique of 1D
NLS equation, we similarly use the operator form of Eq. �1�,

i�t��x,y,t� = �T̂ + V̂���x,y,t� , �22�

where T̂ stands for the linear differential operator, and V̂ for
the nonlinear operator, provided by

T̂ = − �x
2 − �y

2 and V̂ = f����2� + V�x,y� . �23�

It is obvious to see that the kinetic operator T̂ can be approxi-

mated by the corresponding differential operator T̂�3� from
the algebraic Eq. �17�, Eq. �18�, or Eq. �19�, which are the
third-order local boundary conditions at the artificial bound-
aries and the corners. Taking Eq. �17� as an example and
using the dualities, on the east and west boundaries we have
the approximate operators

T̂�3� =
��0

3 + 3i�0
2�x � 3�0�y

2 − �x�y
2

− i�x � 3�0
.

Substituting T̂�3� into Eq. �22�, we have the approximate
equations

i�t��x,y,t� = �T̂�3� + V̂���x,y,t� , �24�

which also can be rewritten as

��x � 3i�0��t��x,y,t�

= ����0
3 + 3i�0

2�x � 3�0�y
2 − �x�y

2�

+ V̂�− i�x � 3�0����x,y,t� . �25�

By simplifying Eq. �25�, we obtain the nonlinear LABCs on
the east and west boundaries as follows:

− i�3�0
2 − V��x� + �x�t� − i�x�y

2�

= � �0��0
2 − 3V�� � 3i�0�t� � 3�0�y

2�

− f����2��i�x� � 3�0�� . �26�

By the same argument, we can achieve the corresponding
LABCs on the other boundaries as follows:

− i�3�0
2 − V��y� + �y�t� − i�y�x

2�

= � �0��0
2 − 3V�� � 3i�0�t� � 3�0�x

2�

− f����2��i�y� � 3�0�� . �27�

Also we can obtain the boundary conditions at corners: BC
at the northeast corner �L ,L�,

3�0�y�t� + 3�0�x�t� + �3�0
2 + 3�0

2 − V − f����2���x�y�

− i�0��0
2 + 9�0

2 − 3V − 3f����2���y� + i�x�y�t�

− 9i�0�0�t� − i�0��0
2 + 9�0

2 − 3V − 3f����2���x�

+ 3�0�0�3V + 3f����2� − �0
2 − �0

2�� = 0, �28�

BC at the southwest corner �0,0�,

− 3�0�y�t� − 3�0�x�t� + �3�0
2 + 3�0

2 − V − f����2���x�y�

+ i�0��0
2 + 9�0

2 − 3V − 3f����2���y� + i�x�y�t�

− 9i�0�0�t� + i�0��0
2 + 9�0

2 − 3V − 3f����2���x�

+ 3�0�0�3V + 3f����2� − �0
2 − �0

2�� = 0, �29�

BC at the southeast corner �L ,0�,

− 3�0�y�t� + 3�0�x�t� − �3�0
2 + 3�0

2 − V − f����2���x�y�

+ i�0��0
2 + 9�0

2 − 3V − 3f����2���y� − i�x�y�t�

− 9i�0�0�t� − i�0��0
2 + 9�0

2 − 3V − 3f����2���x�

+ 3�0�0�3V + 3f����2� − �0
2 − �0

2�� = 0, �30�

and BC at the northeast corner �0,L�,

UNIFIED APPROACH TO SPLIT ABSORBING BOUNDARY… PHYSICAL REVIEW E 79, 046711 �2009�

046711-3



3�0�y�t� − 3�0�x�t� − �3�0
2 + 3�0

2 − V − f����2���x�y�

− i�0��0
2 + 9�0

2 − 3V − 3f����2���y� − i�x�y�t�

− 9i�0�0�t� + i�0��0
2 + 9�0

2 − 3V − 3f����2���x�

+ 3�0�0�3V + 3f����2� − �0
2 − �0

2�� = 0. �31�

Hence, we obtain the explicit LABCs for two-dimensional
�2D� nonlinear equations on the rectangular artificial bound-
aries and corners.

IV. STABILITY ANALYSIS FOR HARMONIC SOLUTIONS

Here we consider the well-posedness of the problem in
the computational domain �i with the obtained LABCs.
Concerning the model Eq. �1�, in which the function f�s� can
be chosen as different forms in different physical problems,
the problem is more complicated because of the nonlineari-
ties. The usual energy methods seem to be difficult to obtain
the energy bound even for the simple 1D problem with order
n=2; one can refer to �18,32,35� and references therein.
Therefore, we use the normal mode analysis method �20,44�
to investigate the model problem when it admits a progres-
sive plane-wave solution �45�

��x,t� = A · est+�x+�y . �32�

For one-dimensional case, the authors in �41� examined the
stability and conclude that, for V+ f =v1+ f1+ i�v2+ f2�, the
induced initial boundary value problem is well posed if func-
tions V�·� and f�·� satisfy v2+ f20 in a small enough time
size. Numerical examples also verify their stabilities. Now
we extend the method to two dimensions. We first recall the
philosophy of the general algebraic normal mode analysis,
which is issued from the fact that the well-posed problem
admits the complex eigenvalues with negative real parts
Re�s��0, or generalized eigenvalues with Re�s�=0 and the
positive �negative� group velocity of the normal mode on the
right-hand �left-hand� boundary. If there exist such eigenval-
ues, the solution will decrease with normal mode est and is
hence stable. If there exist such generalized eigenvalues, the
boundary conditions will admit an outgoing wave which will
propagate energy into the exterior domain not to disrupt the
solution in the computational domain or generate a spurious
wave solution. By the way, design of the LABCs is based on
the assumption that the one-way equation only admits the
outgoing waves. This is because the eigenvalues or general-
ized eigenvalues satisfy the dispersion relations of both the
model equation and the equations on the artificial bound-
aries. To calculate the eigenvalues or generalized eigenval-
ues, we replace the two-dimensional plane-wave form into
Eq. �22� and boundary conditions �26� and �27�. Without loss
of generality, we take the east boundary conditions as an
example. By the same arguments, one can obtain the similar
results on the other boundaries. The parameters �=k cos �
and �=k sin � are the wave numbers in the x and y direc-
tions, respectively, where � is the angle of the direction of k
measured from the normal of the boundary. Substituting the
plane wave into Eq. �22� and the east boundary condition
yields

is = − �2 − �2 + V + f����2� , �33�

is =
i�0��0

2 + 3�0�2 − 3V� − ��3�0
2 − V�

� − 3�0i
+ f����2� . �34�

Solving the algebraic Eqs. �33� and �34� leads to

�� − i�0�3 + 3i�0�2��0 − 1� = 0. �35�

Noticing that �=k sin �=0 on the boundary x=L, we obtain
from Eq. �35�,

� = i�0 and s = − i�0
2 − i�v1 + f1� + �v2 + f2� . �36�

Obviously, one gets Re�s�0 for v2+ f20 from Eq. �36�.
Since the boundary conditions are designed to minimize all
the outgoing waves, this implies that the group velocity is
positive on the right-hand boundary and negative on the left-
hand boundary. Hence there exists no generalized eigenvalue
which will propagate energy into the interior domain to dis-
rupt the true wave solution. If any instabilities caused by the
generalized eigenvalues of the ABCs happen, they would not
propagate energy to disrupt the interior solution. Hence, we
conclude that the obtained 2D LABCs with the governing
equation in the computational domain are stable.

Choose the parameters adaptively

The best choice of parameter k0=	w0 related to the fre-
quency of wave impinged on the artificial boundary, exactly
speaking, is half of the group velocity of the waves. The
main reason is that the Padé approximation corresponds to
the expansion point w0 and would be more accurate when w0
is closer to the frequency w. The relation between group
velocity C and wave number k is

C =
�	

�k
= 2k .

It is natural to ask how to select suitable parameters adap-
tively such that the ABCs can annihilate all the incident
waves efficiently. It is known that the initial wave is com-
posed of waves with different group velocities; they will
reach the artificial boundary separately. The previous papers
proposed two strategies; we recapitulate them as follows. A
first strategy suggested by Fevens and Jiang �20� is to use the
Fourier series expansion of the physical variable in space and
to take the positive components such that its Fourier mode is
dominant by obtaining the frequency information over the
whole computational domain. Another strategy proposed by
Xu et al. �43� is to utilize the Gabor transform in the vicinity
of the artificial boundary. In the frequency domain the Gabor
transform is given by

�̂�k,t� = �
xl

xr

W�x���x,t�e−ikx = �
xl−b

xr

��x,t�e−ikx, �37�

where the window function is
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W�x� = 1, x � �xr − b,xr� ,

0, otherwise,
�

with b denoting the window width. Two choices for k0: the
first one is to take the frequency such that its spectrum is the
maximum, i.e.,

��̂�k0,t�� = sup
k�0


��̂�k,t��� , �38�

the second choice is to utilize the energy-weighted wave-
number parameter selection approach as

k0 =

�
0

�

��̂�k,t��mkdk

�
0

�

��̂�k,t��mdk

, �39�

with m a positive real number. We remark that the second
Eq. �39�, improved the first Eq. �38�, and they are
equivalent to each other when m= +�. The authors in �43�

suggest m=4 is a good choice based on numerical experi-
ments.

V. NUMERICAL IMPLEMENTATION AND EXAMPLES

In the computational domain �0,L�2, let �x, �y, and �t be
the grid sizes in spaces and time. Denote operators D+, D−,
and D0 by the forward, backward, and centered differences,
respectively, and S+, S−, and S0 by the forward, backward,
and centered sums; for example,

D+
x��,j

n = ���+1,j
n − ��,j

n �/�x,S+
t ��,j

n = ���,j
n+1 + ��,j

n �/2.

��,j
n represents the approximation of the function � at the grid

point �x� ,yj , t
n�. We test the performance of the obtained LA-

BCs by using the following linearized Crank-Nicolson
scheme �40,45� for the discretization in interior domains

FIG. 1. Evolution of numerical solutions with different mesh
sizes at corner �10,10�. FIG. 2. Evolution of numerical solutions with different mesh

sizes at point �10,5�.

t

ξ0

0.5 1 1.5 2
0

1

2

3

4
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0
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2
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(b)(a)

FIG. 3. Evolutions of parameters �0 ,�0 by using Gabor transform adaptively.
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iD+
t ��j

n = − �D+
xD−

x + D+
yD−

y�S+
t ��j

n

+ �V�j +
3

2
f����j

n �2� −
1

2
f����j

n−1�2��S+
t ��j

n , �40�

with the order of the truncated error O��t2+�x2+�y2�,
where the nonlinear term is approximated by the known vari-
ables through an extrapolation technique so that nonlinear
iteration can be avoided. Now we focus on the approxima-
tion on the artificial boundary and take the east boundary
condition �26� as example; the discretized forms are given by

�x = D−
xS+

t �I,j
n , � = S−

xS+
t �I,j

n , �yy = S−
xD−

yD+
yS+

t �I,j
n ,

�41�

�t = S−
xD+

t �I,j
n , �xyy = D−

xD+
yD−

yS+
t �I,j

n , �xt = D−
xD+

t �I,j
n ,

�42�

and the discretized forms in the corner boundary condition
�28� are given by

�x = D−
xS−

yS+
t �I,J

n , � = S−
xS−

yS+
t �I,J

n , �y = S−
xD+

yS+
t �I,j

n ,

�43�

�t = S−
xS−

yD+
t �I,J

n , �xy = D−
xD−

yS+
t �I,J

n , �xt = D−
xS−

yD+
t �I,J

n ,

�44�

�xyt = D−
xD−

yD+
t �I,J

n , �yt = D−
yS−

xD+
t �I,J

n , �45�

and f���I,j�2�= 3
2 f���I,j

n �2�− 1
2 f���I,j

n−1�2�. By the same way, the
discretizations can be achieved for the other three boundaries
and three corners. Thus the full-discrete scheme is obtained
for the two-dimensional nonlinear case, which is a linear
algebraic system at each time step.

Example 1. In this example, for the two-dimensional NLS
Eq. �1� by using the linearized Crank-Nicolson scheme, we
take the nonlinearity f����2�=−���2, the potential V�0, and
the initial function

��x,y,0� = 	2e−�x − x0�2−�y − y0�2
e2i�x + y − x0 − y0�2

with the centered point �x0 ,y0�= �5,5�. This test can be seen
in �43�. The wave will propagate into the northwest corner
and arrive to the corner around t=0.4 when L is chosen by

(b)(a)

(c) (d)

FIG. 4. The contour of the numerical solution at different time.

FIG. 5. The initial Gaussian pulse.
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10. In the computational domain �0,10�2, Figs. 1 and 2 plot
the evolutions of the numerical solutions with different mesh
sizes �h=�x=�y� at two points �10,10� and �10,5�, respec-
tively. The reference “exact” solution is obtained by comput-
ing a larger box �0,20�2 with mesh size �x=�y=0.05 and
�t=�x2. To choose the parameters �0 ,�0 adaptively, we set
the window length of the Gabor transform b=L /4 and m
=4 along x and y directions, respectively. The evolutions of
�0 ,�0 are shown in Fig. 3. One can see that the values at the
corner tend to the “exact” solution quickly when small
meshes are used. To further investigate the efficiency of the
LABCs at corners, we set the initial value of the wave

��x,y,0� = 	2e−�x − x0�2−�y − y0�2
e2i�x + y − x0 − y0�2

+ 	2e−�x − x0�2−�y − y0�2
e−2i�x + y − x0 − y0�2

,

with the centered point x0=5 and y0=5. This wave packet
moves along the northeast and southwest directions, and will
impinge on the artificial boundaries �e, �n �s, �w and north-
east and southwest corners, respectively. Figure 4 shows the
contours of the numerical solution ��� at time t=0.5, 1, 1.5,
and 2 under mesh size �x=�y=0.05,�t=�x2 in the domain
�0,L�2 with L=10. Few reflections can be observed. Observe
that if we set the parameters �0 ,�0 as a fixed value about 2.0,
we can also obtain the same desired numerical solutions. In
fact, the parameter can be chosen in a larger interval. For
soliton solutions of the NLS equation, the adaptive choice of
parameter is efficient based on the numerical experiments
�43�.

Example 2. In the second example, the nonlinear term is
chosen as f����2�=g���2 with g=2 and the potential V�0,
which is used to mode the expansion of a Bose-Einstein
condensate. The initial data and potential function �see Fig.
5� are taken to be the Gaussian pulses

��x,y,0� = e−0.1�x − x0�2−0.1�y − y0�2
and V�x,y�

= e−0.5�x − x0�2−0.5�y − y0�2
�46�

with x0=y0=15. It is a nonlinear wave with repulsive inter-
action. In the calculation, we take L=30, �x=�y=0.1, and
�t=0.01. Figure 6 represents the contours of the numerical
solution at different snapshots with �0=�0=2.0. One can see
that there are no clear reflections near the boundaries and
corners.

VI. CONCLUSION

We have shown that the unified approach can obtain the
local absorbing boundary conditions for the two-dimensional
nonlinear Schrödinger equations. The obtained local absorb-
ing boundary conditions on the rectangle are proved to be
well posed and accurate by a normal mode analysis and nu-
merical experiments. This approach provides considerable
insight into the splitting method. We expect that this unified
approach can form a basis for designing the efficient absorb-
ing boundary conditions of a class of nonlinear problems.

(b)(a)

(c) (d)

FIG. 6. The contour of the numerical solution at different time.
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